Expedited System Impact Study for
 Generation Interconnection Request

GEN-2001-033

SPP Tariff Studies
(\#GEN-2001-033)

February 2005

Executive Summary

<OMITTED TEXT>Customer has requested a re-evaluation of a previous System Impact Study performed by Shaw PTI. The re-evaluation investigates changing the wind turbine generators from Vestas V80 type turbines to Mitsubishi MWT-1000a type turbines.

The purpose of this re-evaluation is to determine if the change in equipment will constitute a material change in the interconnection request. The study will compare the operating characteristics of the two turbines to see if they are sufficiently similar.

The Customer has proposed the addition of 180MW of wind-powered generation at the site. The unit will be interconnected to the Southwestern Public Service (SWPS) circuit K50, a 230kV circuit between Chaves and Oasis in eastern New Mexico. The requested in-service date is November 15, 2005.

The previous study assumed 100 each 1.8MW Vestas V80 turbines. This revised evaluation assumes 180 each 1.0MW Mitsubishi MWT-1000a turbines. There are also significant differences between the collector system layouts for each turbine type.

Transient stability analysis indicates that for more probable disturbances with normal fault clearing times, system stability is maintained. With the occurrence of a less probable, extreme fault condition near the San Juan Mesa 230kV bus, in which fault clearing is delayed due to stuck breaker conditions, both turbine types will experience tripping due to low voltage conditions. Also, the Mitsubishi wind turbines appear to trip for fewer low voltage conditions than Vestas V80 wind turbines. This would not be the case if the Vestas turbines were outfitted with the AGO4 low voltage package.

Close, three-phase faults near the interconnection point of the wind farm cause the Mitsubishi wind turbines to trip for low-voltage. This is expected due to the operating characteristics of induction machines. The comparison to the Vestas machines in the same scenario is very similar. It appears that the change to the Mitsubishi machines would not constitute a material change for this interconnection request.

1. Introduction

<OMITTED TEXT>Customer has requested a re-evaluation of a previous System Impact Study performed by Shaw PTI. The re-evaluation investigates changing the wind turbine generators from Vestas V80 type turbines to Mitsubishi MWT-1000a type turbines.

The purpose of this re-evaluation is to determine if the change in equipment will constitute a material change in the interconnection request. The study will compare the operating characteristics of the two turbines to see if they are sufficiently similar.

The Customer has proposed the addition of 180MW of wind-powered generation at the site. The unit will be interconnected to the Southwestern Public Service (SWPS) circuit K50, a 230kV circuit between Chaves and Oasis in eastern New Mexico. The requested in-service date is November 15, 2005.

2. Transient Stability Analysis

Transient Stability analysis was performed to verify dynamic system response to disturbances on the system using a 2009 summer peak model. The customer provided a stability model of the Mitsubishi MWT-1000a for the Shaw PTI PSSE version 29 stability package. The Mitsubishi MWT-1000a differs from the Vestas V80 in several ways.

The Mitsubishi machine has a smaller nominal electrical output, but it has a slightly larger inertia and much lower transient reactance than the Vestas V80. This causes the Mitsubishi machine to exhibit a somewhat stronger reactance to grid voltage dips than a comparable Vestas V80 machine. However, in order to counteract the Vestas' undesirable characteristics, Vestas has give the V80 a much better low voltage ride through rating allowing it to remain interconnected during those low voltage conditions on the grid. In simpler terms, the Mitsubishi voltage decline will be slower than Vestas, but Vestas will remain connected at a much lower voltage than Mitsubishi.

The previous Vestas study was performed by Shaw PTI using the collector system layout provided by the customer. Shaw PTI then used that data to construct an equivalent generator model using six aggregate generators as a proxy for the individual turbines. This study was performed by SPP staff using a new collector system layout designed to accommodate the additional turbines needed to reach the 180MW capacity of the plant. This new collector system layout resulted in 20 aggregate generators acting as a proxy for the individual turbines.

The collector layout for the Mitsubishi turbines is very different from that used for the Vestas study. The current layout calls for 8 collector circuits connected to two230/34.5kV transformers. A 230 kV line will then extend northwest approximately 3.3 miles to the K50 circuit on the SWPS system near the Roosevelt and Chaves county line. Detailed collection system impedance and length data was provided by the customer. The customer also indicated that the collection system would be an underground cable construction. However, no cable charging data was supplied with the system impedance information. Therefore, no charging was included with the collection system. In actuality, this may result in an underestimation of the voltage rise along the collector circuit.

The customer proposed the construction of a total of 72 MVar of capacitor banks at certain positions in the collection system. From the analysis performed, no additional capacitance or reactive support is required for stability purposes. Once the collection system design is finalized for construction, these capacitor values may need to be revisited so that the customer facility satisfies the relevant interconnection power factor requirements.

The machine data for the remaining system was obtained from the current SPP dynamics data files modified to include a previously constructed Mitsubishi MWT-1000a wind farm in the local area. The Caprock Wind Ranch located on the SWPS circuit between Clovis and Tucumcari is an 80MW nameplate capacity facility.

Selected fault scenarios were applied with clearing times specified in accordance with SWPS information. Single phase and three phase fault conditions were tested at the interconnection point and machines in the SWPS control area were monitored for stability. A list of the faults applied is in Table 4 below.

Table 4 Selected Faults

Fault \#	Fault Description
FLT_1_1PH	Single phase fault on the Tolk-Eddy 345kv line (midpoint).
FLT_1_3PH	Three phase fault (same as above)
FLT_2_1PH	Single phase fault on the Tolk-Roosevelt 230kV line (midpoint).
FLT_2_3PH	Three phase fault (same as above)
FLT_3_1PH	Single phase fault on the Oasis - San Juan Mesa 230kV line at Oasis.
FLT_3_3PH	Three phase fault (same as above)
FLT_4_1PH	Single phase fault on the Chaves - San Juan Mesa 230kV line at Chaves.
FLT_4_3PH	Three phase fault (same as above)
FLT_5_1PH	Single phase fault on the Tolk - Tuco 230kV line at Tuco.
FLT_5_3PH	Three phase fault (same as above)
FLT_6_1PH	Single phase fault on the Oasis - Norris 115kV line at Norris.
FLT_6_3PH	Three phase fault (same as above)

The faults above were applied in two scenarios: A basecase without the Customer plant and a case with the Customer plant online at 180MW.

Transient stability analysis indicates that for more probable disturbances with normal fault clearing times, system stability is maintained. With the occurrence of a less probable, extreme fault condition near the San Juan Mesa 230kV bus, in which fault clearing is delayed due to stuck breaker conditions, both turbine types will experience tripping due to low voltage conditions. Also, the Mitsubishi wind turbines appear to trip for fewer low voltage conditions than Vestas V80 wind turbines. This would not be the case if the Vestas turbines were outfitted with the AGO4 low voltage package.

The table in the appendix documents each fault and the behavior of each aggregate generator. The table will show whether the generator tripped and at what time during the simulation that it was tripped. Also listed in the table is the maximum voltage and minimum voltage experienced at each wind turbine generator. This information will be useful to
determine which faults were most severe and how the collector system layout affects the voltage profile. Minimum voltages below 0.85 pu were highlighted in red. These voltages are low enough such that a trip timer would be initiated. If the wind turbine did not trip, then the voltage recovered fast enough such that the turbine was not tripped. However, slightly delayed clearing of the fault could cause this generator to be tripped. Significantly delayed clearing of any of the faults simulated would most likely result in tripping of the wind farm.

6. Conclusion

This System Impact Study re-evaluation was requested by Customer to assess whether a change from Vestas V80 wind turbines to Mitsubishi MWT-1000a wind turbines would constitute a material modification to the interconnection request. The interconnection requirements for the addition of 180MW of new generation are the same for the Mitsubishi MWT-1000a wind turbines as they were for the Vestas V80 wind turbine.

The customer proposed the construction of a total of 72 MVar of capacitor banks at certain positions in the collection system. From the analysis performed, no additional capacitance or reactive support is required for stability purposes. Once the collection system design is finalized for construction, these capacitor values may need to be revisited so that the customer facility satisfies the relevant interconnection power factor requirements.

The analysis evaluated the MWT-1000a and compared the impact of introducing the new generation on the power system, during normal operation and contingency conditions, using the previously performed Shaw PTI study utilizing the Vestas V80 machines.

Appendix

Trip Matrix
San Juan Mesa Wind Farm
MHI MWT-1000a
180MW nameplate

	90900 Circuit t turbine 15 1.0111	\qquad	Circuit 15020 trbine 1.0119	9093 Circuit turbine 24 1.0265	9094 Circuit turbine 6 1.0068	90905 Circuit turbine 15 1.0191 	 90906 Circuit tiurbine 19 1.0226	9097 Circuit t turbine 3 1.0076	90908 Circuit t turbine 22 1.0098	9099 Circuit t turbine 19 1.0229	90910 Circuit 5 turbine 15 1.0115	$\begin{gathered} 90911 \\ \text { Circuit } 5 \text { tu } \\ 29 \end{gathered}$	$\begin{aligned} & 311 \\ & \text { turbine } \end{aligned}$	Circuí	turbine	ciral	turbine	ciral	turbine						turbine				90920 Circuits 8 turbine 10 1.0282
	$v_{\text {max }}=1.0$ $v_{\text {min }}=$	$\mathrm{v}^{\text {max }}=1.0$	$v_{\text {max }}=0$	Vmax $=1.0021$	$\mathrm{n}=0.8$	$V_{\text {max }}=1.0 .9986$	$V_{\text {max }}=1.0{ }^{\text {a }}$	$V_{\text {min }}=1.0008991$	min $=0.897$	$V_{\text {max }}=1.0{ }^{\text {max }}$	in $=0.89$	＝	0.9	$v_{\text {mix }}=$	0．893	$\mathrm{Vmin}=$	0.89546	$v_{\text {max }}=$		min						$v_{\text {min }}=$			$=0.918$
	Notripeed		Not tripeed		Strioee			Nottripeed	Nottripeed		Not tripea																		Not triped
	max $=$	$\mathrm{Vmax}=0.80$	Vmin	$v_{\text {min }}=$	V min $=0.7693$	$\mathrm{Vmin}=0.7847$	$=0.788$	n＝ 0.7	0.773	0.78			0.80		${ }_{0}^{1.007}$	Vmin	0.77	$V_{\text {max }}=$		Vmin					0.79				min $=0.80$
	Not	med	pped	Notrioped	Notrinoped			ot tripend																					
Na^{2}	$V_{\text {max }}=$																												
	Notrinped	Nottriped	Nottinped	Notrinped	Nottriped	Nottinoed	Nottripeed	Not tripeed	Not	Not	Not	Not	\％ed	Nottr	0eed			Nottiv	oeed										0.95
	ax $=$																1.												
	min $=$	min $=0.6$	min $=0.64$	min $=0.66$	min $=0.63$	min $=0.65$	in $=$	$=0.63$	＝$=0.6$	n＝	＝	$=$		＝		Not		，								，			0.68
	x $=$	$\mathrm{V}_{\text {max }}=1.05$		$V_{\text {max }}=1.04$	＝ 1.	＝ 1.03		1	－ 1.02	＝ 1.04	$\mathrm{m}_{\text {max }}=1.02$		1.																
	$\mathrm{n}=$	$=$	$\mathrm{Vmin}=0.8259$	$V_{\text {min }}=0.8841$	$V_{\text {min }}=0.81$	$V_{\text {min }}=0.8334$	V min $=0.837$	min $=0.819$	min $=0.821$	$V_{\text {min }}=0.83$	V min $=0.8254$		0.8556	V min $=$				Vmin	0.82										
－${ }^{3}$	$\mathrm{V}_{\max }=1.011$									$\mathrm{V}_{\text {max }}{ }_{\text {max }}=$		$V_{\text {max }}=$																	
	ipped	Nottippe	Not tipped	促		Not tripped	Not tipped	Not tipped	Not tiped	Nottriped	Notripped																		
	vax $\mathrm{Vmmin}=$ $=0.81 .83$	$\begin{array}{lr} \mathrm{V} \max = & 1.055 \\ \mathrm{~V} \min = & 0.8451 \end{array}$	$\begin{array}{ll} a x= & 1.6 \\ \text { in }= & 0.81 \end{array}$	$\begin{aligned} & \text { ax }={ }^{2}=1 \\ & \text { in }=0 \end{aligned}$						$\begin{array}{ll}\max = \\ \min = & 1.046 \\ 0.830\end{array}$	$\begin{array}{ll}V \max & 1.09 \\ V \min = & 0.81\end{array}$	$\mathrm{xax}^{\mathrm{n}}=$	${ }_{849}$	max $=$ vin		V max $=$		$V \max =$ Vmin							$\begin{aligned} & 1.044 \\ & { }_{0.83}^{4} \end{aligned}$	$V_{\text {max }}=$			
		\％otim																											
	ax $=$	$V_{\text {min }}=0.4466$		max $=$		min $=$	in $=$	隹 $=$	ax $=1.0$	max $=$	max $=1.012$	$V_{\text {max }}=$ V min	0.4525	$V_{\text {max }}$		$V_{\text {min }}=$		max		$\mathrm{Vmin}^{\text {max }}$＝									
	rippec	Nottripeed																											
		$\begin{aligned} & 1.000 \\ & \hline 1.000 \end{aligned}$			0.9811		${ }^{1.025}$	${ }^{1.90}$	$\begin{aligned} & 1.0122 \\ & 0.012 \end{aligned}$	${ }^{1.092}$	0.986	$\mathrm{xax}^{\mathrm{n}} \mathrm{=}$	${ }_{1}^{1.01}$	$V_{\text {max }}=$		$V_{\text {max }}=$		$V_{\text {max }}=$					1．92		${ }^{1.992}$	$\begin{aligned} & V_{\text {mma }} \\ & x_{\text {min }} \end{aligned}$			
		Not triped	ped	Itrioed	ped		－	Iot	dod	ded	0	Not tipe	pped																
		0.922	0.8983	$\mathrm{V}_{\text {min }}=0.9094$	0.891	－${ }_{0.905}^{1.03}$	0.9094	0.892	${ }^{1.0292}$				${ }^{1.047}$				－1．029		${ }_{0}^{1.892}$		1．91		0.90		0.9				$=0.92$
		迷	Totio																										
	$\begin{aligned} & \text { nax }=\quad 1 . \\ & \text { nin } \end{aligned}$		$V_{\max }=1.01$ $V_{\text {min }}=$ 0.94	0.95		0.951	0.955	0.9															0.95						max $=0.9$
	Not triped	Not tipped	Not tripped	Not tripeed	peed	Nottriped	Nottripeed	tippe	otripped	Not triped	Not triped	Not trip																	Not tipeed
	$\mathrm{Vmax}=1.015$ $\mathrm{Vmin}=$ 0.7523		$v_{\text {max }}=0.70{ }^{1.065}$	$\mathrm{Vmin}=\begin{aligned} & \text {（ } \\ & 0.772\end{aligned}$	$\mathrm{Vmax}=1.011$	$V_{\text {max }}=1.003$						$\mathrm{Vmax}=$ V min $=$		$V_{\text {min }}=$				$\mathrm{Vmax}=$ $\mathrm{Vmin}=$		$V_{\text {min }}=$					0.771	$\begin{aligned} & x= \\ & i= \\ & i= \end{aligned}$			$=$

